Demonstration of a 17-GHz, high-gradient accelerator with a photonic-band-gap structure.
نویسندگان
چکیده
We report the testing of a high gradient electron accelerator with a photonic-band-gap (PBG) structure. The photonic-band-gap structure confines a fundamental TM(01)-like accelerating mode, but does not support higher-order modes (HOM). The absence of HOM is a major advantage of the PBG accelerator, since it suppresses dangerous beam instabilities caused by wakefields. The PBG structure was designed as a triangular lattice of metal rods with a missing central rod forming a defect confining the TM(01)-like mode and allowing the electron beam to propagate along the axis. The design frequency of the six-cell structure was 17.14 GHz. The PBG structure was excited by 2 MW, 100 ns pulses. A 16.5 MeV electron beam was transmitted through the PBG accelerator. The observed electron beam energy gain of 1.4 MeV corresponds to an accelerating gradient of 35 MV/m, in excellent agreement with theory.
منابع مشابه
PHOTONIC BAND GAP ACCELERATOR CAVITY DESIGN AT 90 GHz*
In previous work we have proposed utilizing Photonic Band Gap (PBG) structures as a new class of high-energy, high-intensity accelerator cavities. We have completed extensive MAFIA numerical calculations of multicell PBG structures, with each cell consisting of a square array of metal cylinders terminated by conducting sheets and surrounded by microwave absorber on the periphery. We find that o...
متن کاملFabrication and cold test of photonic band gap resonators and accelerator structures
1098-4402= We present the detailed description of the successful design and cold test of photonic band gap (PBG) resonators and traveling-wave accelerator structures. Those tests provided the essential basis for later hot test demonstration of the first PBG accelerator structure at 17.140 GHz [E. I. Smirnova, A. S. Kesar, I. Mastovsky, M. A. Shapiro, and R. J. Temkin, Phys. Rev. Lett., 95, 0748...
متن کاملساختار نواری و تابش گرمایی بلور فوتونیکی دو بعدی سیلیکونی
In this research, we have studied the photonic band structure, optical properties and thermal emission spectrum of 2D Silicon photonic crystal with hexagonal structure. The band structure, band gap map and the gap size versus radius have been calculated by plane wave expansion method. The maximum band gap size of TE (TM) polarization and the complete gap size are 51% (20%) and 17% at air hole r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 95 7 شماره
صفحات -
تاریخ انتشار 2005